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Abstract

The analytical solutions for the interaction between dislocations and interfaces are of great importance to materials

scientists as well as to mechanics researchers. The interfaces are treated as perfectly bonded in the most of the existing

research works, where the traction and displacement vectors are continuous across the interfaces. However, in reality,

there are discontinuities of displacements across the interfaces. In the present paper, the interaction between a screw

dislocation and an imperfect interface is considered. The imperfect interface is modeled by linear spring and dashpot,

i.e. linearly elastic and viscoelastic behaviors are introduced to model the imperfection of the interface. Particularly, we

solved the boundary value problem analytically for Kelvin and Maxwell type of interface. In terms of geometrical

configurations, we obtained the solutions for two joint half-spaces and a circular inclusion embedded in an infinite

matrix. The analytical results show that the force acting on the dislocation depends on the mismatch of materials and

the imperfection of the interface and evolves as time elapses.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The analytical research on the interaction between interfaces and dislocations started in early 1950s by

Head (1953) who analyzed the force on a screw dislocation near an interface of a bi-material. Since then,

dislocation interacting with interfaces has been an active research topic for solid mechanics researchers. The
following two review articles give us a clear picture of the evolution of the research. Dundurs (1969) did the

first detailed review, where he summarized most of the contributions up to the end of 1960s. Most recently,

Chen (2001) reviewed the progress in the dislocation/interface interaction research in the past thirty years as

part of his effort to study the dislocations interacting with wedged interfaces and inhomogeneities. Since the

single dislocation interaction with interfaces can be considered as Green�s function, there are a number of
research topics derived from the dislocation/interface interaction research. The cracks (Griffith crack and
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Zener–Stroh crack) have been formulated by using distributed dislocation concept (Weertman, 1996). The
plasticity and strengthening phenomena have also been explained and calculated by dislocation mecha-

nisms (Hirth and Lothe, 1982, and Mura, 1987).

It is noticed that in all the above mentioned research works, the interface was treated as perfectly

bonded. In mechanics terminology, it is described by, referring to the configuration of Fig. 1,

T ð2Þ
i ð0; y; tÞ ¼ T ð1Þ

i ð0; y; tÞ traction continuity; and

uð1Þi ð0; y; tÞ ¼ uð2Þi ð0; y; tÞ displacement continuity:
ð1:1Þ

Introducing the imperfection to the interface gives us a useful analytical tool to model the damaged
interface (Fan and Sze, 2001) and inter-phase (Hashin, 1991), to name a few. Among the various imperfect

interface models, the linear spring model has been widely used and shown good agreements with the ex-

perimental data (Margetan et al., 1988; Lavrentyev and Rokhlin, 1998). The linear spring model also

attracted attention from analytical researchers (for example, Zhong and Meguid (1997), Shilkrot and

Srolovitz (1998) and Benveniste (1999)). As another imperfect interface model, the slipping model, in which

interfaces have no resistance to the shear force, has also been adapted in many research works. Stagni and

Lizzio (1992) investigated the dislocation in a lamella inhomogeneity with slipping interfaces. Chen et al.

(1998) considered the dislocation near a sliding interface. More recently, Benveniste and Miloh (2001)
made detailed classification of the imperfect interfaces by using an asymptotic expansion.

In the following sections, the interaction of a screw dislocation with viscoelastic interfaces is considered.

The two materials adjacent to the interface are assumed to be linearly elastic, while the imperfect interface is

assumed to be viscoelastic. Solutions for the Kelvin model and Maxwell model are derived for demon-

stration purpose. Two geometrical configurations are considered in Sections 2 and 3, i.e. two-joint infinitely

extended half-spaces and a circular inhomogeneity embedded in an infinite matrix.

As a rule of thumb, the viscoelastic behavior should be considered when the working temperature of a

solid is above 1=3 to 1=2 of its melting temperature (Kelvin scale). There are plenty of cases where the
interface should be considered as viscoelastic. As an example, let us consider a case where two pieces of

Fig. 1. A screw dislocation near an interface.
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metal (e.g. aluminum) are jointed by a lower melting temperature ‘‘glue’’ (e.g. epoxy). The melting tem-

perature for aluminum is about 933 �K, while the melting temperature for epoxy is about 340–380 �K
(Ashby and Jones, 1980). If this joint piece is working at room temperature (300 �K), the materials are
considered as linear elastic, while the interface should be considered as viscoelastic.

2. A screw dislocation near viscoelastic interfaces

Firstly, let us consider a screw dislocation near an imperfect interface as depicted in Fig. 1. The Materials

1 and 2 adjacent to the interface are linearly elastic and their shear moduli are denoted by G1 and G2
(Poisson�s ratios m1, m2 are not needed for anti-plane problem). The interface, on the other hand, possesses
viscoelasticity. The coordinates are set up in such a way that the interface is along the y-axis and the screw
dislocation is located in Material 1 at point (a; 0).
For the present anti-plane configuration, the only non-vanishing displacement uz is the function of co-

ordinates x and y. Since the viscoelastic response comes from the interface, the inertia force can be neglected
in Materials 1 and 2. Thus, the displacement uz satisfies the Laplace�s equation

r2uz ¼ 0: ð2:1Þ

For a linearly elastic solid, the non-vanishing stress components are given by Hooke�s law,

rxz ¼ G
ouz
ox

; and ryz ¼ G
ouz
oy

: ð2:2Þ

When t ¼ 0, a screw dislocation is introduced into Material 1 and fixed at the position (a; 0). For the sake of
convenience, we take the plane y ¼ 0 as the dislocation slipping plane, i.e.

lim
g!0

½uzðx;�g; tÞ � uzðx; g; tÞ� ¼ b ðfor g > 0; x > a and tP 0Þ; ð2:3Þ

where b is the magnitude of Burgers vector. At any moment, the traction across the interface is assumed to
be continuous

rð2Þ
xz ð0; y; tÞ ¼ rð1Þ

xz ð0; y; tÞ; ð2:4Þ
where the superscripts ‘‘1’’ and ‘‘2’’ denote Materials 1 and 2. For the displacement condition on the in-

terface, several models are available in the open literature, for example, the perfect interface (Head, 1953),

the linear spring model (Hashin, 1991) and the slipping model (Chen et al., 1998). In the present study, we

introduce the viscoelastic behavior to the imperfect interface.

Firstly let us consider the Kelvin model, in which a linear spring and a linear dashpot are parallel-

connected (Shames and Cozzarelli, 1997). The relationship between the jump of displacement and the

traction on the interface is given by

k½uð1Þz ð0; y; tÞ � uð2Þz ð0; y; tÞ� þ g
o

ot
½uð1Þz ð0; y; tÞ � uð2Þz ð0; y; tÞ� ¼ rð1Þ

xz ð0; y; tÞ; ð2:5Þ

where k is the ‘‘spring constant’’ of the interface and g is the viscosity coefficient.
At t ¼ 0, when the dislocation is just introduced into Material 1, the displacement across the interface

has no time to have a jump due to the dashpot. Therefore the initial condition for the displacement is read

as

uð1Þz ð0; y; 0Þ ¼ uð2Þz ð0; y; 0Þ: ð2:6Þ
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The solution to this boundary/initial value problem is assumed as

uð1Þz ¼ b
2p

ðh1 þ Kh2Þ þ ûuð1Þz ; ð2:7Þ

uð2Þz ¼ b
2p

½ð1� KÞh1 þ Kp� þ ûuð2Þz ; ð2:8Þ

where the definition of h1 and h2 are shown in Fig. 1 and

K ¼ C � 1
C þ 1 ; and C ¼ G2=G1: ð2:9Þ

It is noticed that the underlined terms in Eqs. (2.7) and (2.8) are the solutions for the perfect interface

(Dundurs, 1969), while the imperfection of the interface is included in ûuð1Þz and ûuð2Þz which are also harmonic
functions, i.e.

r2ûuð1Þz ¼ 0; and r2ûuð2Þz ¼ 0: ð2:10Þ
To solve this boundary/initial value problem, we apply the Laplace�s transformation to time t, and the
Fourier transformation to the coordinate y. Thus, the displacement can be expressed asbUUzðx; s; pÞ ¼

Z 1

0

Z 1

�1
ûuzðx; y; tÞe�isye�pt dy dt; ð2:11Þ

ûuzðx; y; tÞ ¼ L�1 1

2p

Z 1

�1
bUUzðx; s; pÞeisy ds

� �
; t

� �
; ð2:12Þ

where L�1 refers to the inverse formulae of Laplace�s transformation. Substitution of Eq. (2.12) into Eq.
(2.10) leads to

o2

ox2

�
� s2

�bUUzðx; s; pÞ ¼ 0: ð2:13Þ

Since the displacements should be finite as x ! 1, we have the integral transformations of displacements in
Materials 1 and 2 asbUU ð1Þ

z ðx; s; pÞ ¼ Aðs; pÞe�jsjðx�aÞ; ð2:14Þ

bUU ð2Þ
z ðx; s; pÞ ¼ Cðs; pÞejsjðxþaÞ: ð2:15Þ

By using the conditions of Eqs. (2.4), (2.5) and (2.6), AðsÞ and CðsÞ can be determined by
Aðs; pÞ ¼ �CCðs; pÞ; ð2:16Þ

Cðs; pÞ ¼ i

2
bðK � 1ÞsgnðsÞ 1

p
ae�2ajsj

jasj þ k þ pt0
; ð2:17Þ

where sgn(s) is the sign function

sgnðsÞ ¼
1 s > 0
0 s ¼ 0
�1 s < 0

8<: ; ð2:18Þ

and

k ¼ ak
G1 þ G2
G1G2

� �
; and t0 ¼ ag

G1 þ G2
G1G2

� �
: ð2:19Þ

k is a dimensionless parameter which measures the interface ‘‘rigidity’’ and t0 is the relaxation time.
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Substituting Eqs. (2.14)–(2.19) into (2.12), we can obtain the displacements ûuð1Þz and ûuð2Þz as

ûuð1Þz ðx; y; tÞ ¼ CbðK � 1Þ
2p

Z 1

0

ae�sðxþaÞ

asþ k
1

�
� exp

�
� as

t
t0
� k

t
t0

��
sinðsyÞds; ð2:20Þ

ûuð2Þz ðx; y; tÞ ¼ � bðK � 1Þ
2p

Z 1

0

aesðx�aÞ

asþ k
1

�
� exp

�
� as

t
t0
� k

t
t0

��
sinðsyÞds: ð2:21Þ

Furthermore, substituting Eqs. (2.20) and (2.21) into Eqs. (2.7) and (2.8), and then using Hooke�s law
Eq. (2.2), we obtain the total stresses in the bi-materials as

rð1Þ
zx ðx; y; tÞ ¼

G2bðK � 1Þ
2p

Z 1

0

e�sðxþaÞ

asþ k
k

�
þ sa exp

�
� as

t
t0
� k

t
t0

��
sinðsyÞds� G1b

2p
y
r21

�
� y
r22

�
;

ð2:22Þ

rð1Þ
zy ðx; y; tÞ ¼ �G2bðK � 1Þ

2p

Z 1

0

e�sðxþaÞ

asþ k
k

�
þ sa exp

�
� as

t
t0
� k

t
t0

��
cosðsyÞdsþG1b

2p
x� a
r21

�
� xþ a

r22

�
;

ð2:23Þ

rð2Þ
zx ðx; y; tÞ ¼

G2bðK � 1Þ
2p

Z 1

0

esðx�aÞ

asþ k
k

�
þ sa exp

�
� as

t
t0
� k

t
t0

��
sinðsyÞds; ð2:24Þ

rð2Þ
zy ðx; y; tÞ ¼

G2bðK � 1Þ
2p

Z 1

0

esðx�aÞ

asþ k
k

�
þ sa exp

�
� as

t
t0
� k

t
t0

��
cosðsyÞds: ð2:25Þ

The elastic interaction energy for the configuration can be calculated by

E ¼ 1
2
b
Z 1

aþr0

rð1Þ
zy ðx; 0; tÞdx; ð2:26Þ

where r0 is the radius of dislocation core, used to cancel the impropriety of elastic theory in the core. Using
Eq. (2.23), we can obtain

E ¼ b2G1
4p

ln
2a
r0

� �

þ 2C

C þ 1 e
2kEi 2k

��
þ k

t
t0

�
þ
Z 1

0

e�2w

wþ k
k
w
dw

��
; ð2:27Þ

where

EiðxÞ ¼
Z 1

x

e�q

q
dq; and w ¼ as: ð2:28Þ

The force acting on the dislocation is given by the negative gradient of the interaction energy with respect to

the position of dislocation, a,

F ¼ � oE
oa

¼ � b2G1
4pa

1

�
� 2C

C þ 1 fKðk; t=t0Þ
�
; ð2:29Þ

where

fKðk; t=t0Þ ¼ 2ke2k Eið2kÞ
�

� Ei 2k

�
þ k

t
t0

��
þ 1

�
þ t
2t0

��1

exp

�
� k

t
t0

�
: ð2:30Þ

The subscript ‘‘K’’ refers to the Kelvin Model.

H. Fan, G.F. Wang / International Journal of Solids and Structures 40 (2003) 763–776 767



Fig. 2 shows the variation of fKðk; t=t0Þ with respect to t=t0 for various k. When k tends to be infinity,
fK ¼ 1, the force given by Eq. (2.29) tends to that for the perfect interface. When k equals to zero, the
interface is described by the dashpot only and evolves toward a free surface as time elapses. Fig. 3 shows the

variation of fKðk; t=t0Þ with respect to k for various t=t0. It is seen that C and k determine the initial and
the final magnitude of the interacting force, while t0 sets the process of the evolution.
Secondly, we apply Maxwell model to the interface. The constitutive Eq. (2.5) for the interface is re-

placed by

o

ot
uð1Þz ð0; y; tÞ
�

� uð2Þz ð0; y; tÞ


¼ 1

k
o

ot
½rð1Þ

xz ð0; y; tÞ� þ
1

g
rð1Þ
xz ð0; y; tÞ: ð2:31Þ
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t / t0
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=0

λ

λ
λ
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λ

Fig. 2. The variation of fKðk; t=t0Þ vs. t=t0.
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Fig. 3. The variation of fKðk; t=t0Þ vs. k.
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At the moment of t ¼ 0, the dashpot does not deform immediately, while the spring responds to the loading
without time delay. Thus, the displacement across the interface exhibits an immediate jump as the response

of the spring,

k½uð1Þz ð0; y; 0Þ � uð2Þz ð0; y; 0Þ� ¼ G2bðK � 1Þ
2p

Z 1

0

kesðx�aÞ

asþ k
sinðsyÞds: ð2:32Þ

Through a similar formulation, it is found that the interacting force on the screw dislocation takes the same

form as Eq. (2.29), but fK is replaced by

fMðk; t=t0Þ ¼
Z 1

0

2ke�2w

wþ k
exp

�
� wk
wþ k

t
t0

�
dw; ð2:33Þ

where k and t0 are defined in Eq. (2.19) and the subscript ‘‘M’’ refers to the Maxwell model. It is noticed in
Eq. (2.31) that the displacement jump increases till the traction on the interface reaches zero. In other

words, the interface evolves toward a free surface when time elapses. The evolutions for Kelvin model and

Maxwell model are compared in Fig. 4.

3. Discussion on special cases

In the above derivation, there are two interfacial parameters, namely, k and t0, defined in Eq. (2.19). The
special cases, when these two parameters take limit values (zero and infinity), call for a detailed discus-

sion.

Firstly, let us consider the Kelvin model governed by Eq. (2.5),

k½uð1Þz ð0; y; tÞ � uð2Þz ð0; y; tÞ� þ g
o

ot
½uð1Þz ð0; y; tÞ � uð2Þz ð0; y; tÞ� ¼ rð1Þ

xz ð0; y; tÞ: ð2:5Þ

ðK1Þg ¼ 0:
The vanishing coefficient of viscosity leads to a zero relaxation time, t0 ¼ 0. Eq. (2.5) becomes

kbuð1Þz ð0; y; tÞ � uð2Þz ð0; y; tÞc ¼ rð1Þ
xz ð0; y; tÞ: ð3:1Þ

0               2 4               6 8             10
0.0

0.2

0.4

0.6

0.8

1.0

= 0.1

= 1

= 0.1

= 1
f K

,f
M

t / t0

 Kelvin  model
 Maxwell model

λ

λ

λ
λ

Fig. 4. Comparison between the Kelvin model and the Maxwell model.
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The constitutive relation for the interface given by Eq. (3.1) is commonly called ‘‘linear spring model’’. It is

realized that there is no time effect in the solution since the visco-effect vanishes. The force acting on the

dislocation due to the imperfection of the interface is reflected by the curve of t=t0 ! 1 in Fig. 3.

ðK2Þg !‘.
For this condition, (relaxation time t0 ! 1) and Eq. (2.5) becomes

buð1Þz ð0; y; tÞ � uð2Þz ð0; y; tÞc ¼ F ðyÞ: ð3:2Þ
It refers to the prescribed displacement jump along the interface. One of the plausible physical models can

be found in the dislocation theory of grain boundaries. The grain boundary was modeled as a pile up of
dislocations or distributed dislocations along the grain boundary between two grains (Hirth and Lothe,

1982, Chapter 19). It should be pointed out that we need to relax the initial condition Eq. (2.6)

buð1Þz ð0; y; 0Þ � uð2Þz ð0; y; 0Þc ¼ 0 by Eq. (3.2) for the above physical phenomenon.
Nevertheless, our numerical result shown in Fig. 3 (t=t0 ¼ 0) for this limit converges to a perfect interface

solution due to the initial condition Eq. (2.6).

ðK3Þk ¼ 0.

Eq. (2.5) is simplified as

g
o

ot
½uð1Þz ð0; y; tÞ � uð2Þz ð0; y; tÞ� ¼ rð1Þ

xz ð0; y; tÞ; ð3:3Þ

that means the imperfect interface will deform like viscous fluid, which cannot resist the shear stress.

Therefore, the jump of displacement does not stop increasing until the traction on the interface reaches

zero, which means a free surface. The graphical result is shown in Fig. 2 by the curve k ¼ 0.

ðK4Þk !‘.
This condition leads to

buð1Þz ð0; y; tÞ � uð2Þz ð0; y; tÞc ¼ 0: ð3:4Þ
This is the condition for a perfect interface.

For the second viscoelastic model, Maxwell model, there are also four limit cases for our attention. The

original constitutive equation for the interface is given by

o

ot
½uð1Þz ð0; y; tÞ � uð2Þz ð0; y; tÞ� ¼ 1

k
o

ot
½rð1Þ

xz ð0; y; tÞ� þ
1

g
rð1Þ
xz ð0; y; tÞ: ð2:31Þ

ðM1Þg ¼ 0.

This condition corresponds to a zero relaxation time, t0 ¼ 0. Eq. (2.31) becomes

rð1Þ
xz ð0; y; tÞ ¼ 0: ð3:5Þ

This is the free surface condition. fM ¼ 0 for this case.

ðM2Þg !‘.
Under this condition, the interface is described by

kbuð1Þz ð0; y; tÞ � uð2Þz ð0; y; tÞc ¼ rð1Þ
xz ð0; y; tÞ: ð3:6Þ

It is the so-called linear spring model for the interface.

ðM3Þk ¼ 0.

Eq. (2.31) becomes

rð1Þ
xz ð0; y; tÞ ¼ HðyÞ: ð3:7Þ
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Our numerical solution converges to the free surface solution due to the constraint of the initial condition

Eq. (2.32).

ðM4Þk !‘.

g
o

ot
½uð1Þz ð0; y; tÞ � uð2Þz ð0; y; tÞ� ¼ rð1Þ

xz ð0; y; tÞ: ð3:8Þ

The interface is described by the dashpot only.

For the sake of quick reference, all the discussion in the present section is summarized in Table 1.

4. Screw dislocation interacting with circular inclusion

Let us consider a screw dislocation in the matrix as shown in Fig. 5, where n > 1. The Laplace�s equation
in the polar coordinate takes the form of

r2uz ¼
o2

or2

�
þ o

ror
þ o2

r2o2h

�
uz ¼ 0: ð4:1Þ

Its general solution is assumed to be

uð1Þz ¼ b
2p

h1 þ Kðh2 � hÞ
(

þ
X1
n¼1

a
r

� �n
½an cosðnhÞ þ bn sinðnhÞ�

)
; ð4:2Þ

uð2Þz ¼ b
2p

ð1� KÞh1 þ pK

(
þ
X1
n¼1

r
a

� �n
½cn cosðnhÞ þ dn sinðnhÞ�

)
; ð4:3Þ

Table 1

Summary of the special cases

Interface model g ¼ 0 g ! 1 k ¼ 0 k ! 1
Kelvin Spring model Prescribed jump of displacement g½ _uu� ¼ r Perfect interface

Maxwell Free surface Spring model Free surface g½ _uu� ¼ r

a a

a/

2
1 x

y

θ

ξ

θ
θ

ξ

Fig. 5. A screw dislocation near a circular inclusion.
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where 06 h1, h2, h6 2p and K is defined by Eq. (2.9). Again, the underlined terms in Eqs. (4.2) and (4.3) are
the solutions for the perfect interface (Dundurs, 1969). The effect of the imperfection of the interface is

taken into account by the series solution.

The traction on the interface, r ¼ a, is continuous

rð2Þ
rz ða; hÞ ¼ rð1Þ

rz ða; hÞ; ð4:4Þ

where

rrz ¼ ryz sin h þ rxz cos h: ð4:5Þ

The displacement condition on the imperfect interface is described by the Kelvin model. At the time t ¼ 0,

uð1Þz ða; h; 0Þ � uð2Þz ða; h; 0Þ ¼ 0: ð4:6Þ

When t > 0,

k½uð1Þz ða; h; tÞ � uð2Þz ða; h; tÞ� þ g
o

ot
½uð1Þz ða; h; tÞ � uð2Þz ða; h; tÞ� ¼ rð1Þ

rz ða; h; tÞ: ð4:7Þ

Substituting Eqs. (4.2) and (4.3) into Eqs. (4.4) and (4.7) leads to

an ¼ cn ¼ 0; bn ¼ �Cdn; ð4:8Þ

dn ¼ ð1� KÞ TK
p

Z p

�p

n sin h sinðnhÞ
1þ n2 � 2n cos h

dh; ð4:9Þ

TK ¼ 1

nþ k
1

�
� exp

�
� k þ n

t0
t
��

; ð4:10Þ

where k and t0 are defined by Eq. (2.19). It should be pointed out that the parameter ‘‘a’’ in the present
section is the radius of the circular inclusion, which is different from the ‘‘a’’ in Section 2.
The interaction energy of dislocation is given by

E ¼ b2G1
4p

K log
n2

n2 � 1

� �"
þ
X1
n¼1

CðK � 1Þ TK
p

Z p

�p

n1�n sin h sinðnhÞ
1þ n2 � 2n cos h

dh

#
: ð4:11Þ

The force acting on the dislocation is calculated by taking the derivative of E with respect to n (while a is a
constant).

Fx ¼
b2G1K

2panðn2 � 1Þ
1

�
þ C

C � 1 g1Kðn; k; t=t0Þ
�
; ð4:12Þ

where

g1K ¼ nðn2 � 1Þ
X1
n¼1

n�n TK
p

Z p

�p

1� n� ð1þ nÞn2 þ 2nn cos h
ð1þ n2 � 2n cos hÞ2

sin h sinðnhÞdh
" #

: ð4:13Þ

If the Maxwell model is adopted on the interface,

o

ot
½uð1Þr ða; h; tÞ � uð2Þr ða; h; tÞ� ¼ 1

k
orð1Þ

rz ða; h; tÞ
ot

þ 1
g

rð1Þ
rz ða; h; tÞ: ð4:14Þ
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The initial condition is

k½uð1Þr ða; h; 0Þ � uð2Þr ða; h; 0Þ� ¼ bG2ðK � 1Þ
2pa

X1
n¼1

k sinðnhÞ
nþ k

1

p

Z p

�p

n sin h0 sinðnh0Þ
1þ n2 � 2n cos h0 dh

0

" #
: ð4:15Þ

The corresponding results can be obtained by replacing Eq. (4.10) with

TM ¼ 1

nþ k
þ k
nþ k

1

n
1

�
� exp

�
� nk
nþ k

t
t0

��
: ð4:16Þ

As a counterpart problem of the above configuration, in the rest of this section, we will consider the case

when the dislocation is inside the inclusion, n < 1. The displacement field is structured as

uð1Þz ¼ b
2p

ð1þ KÞh1 � Kh

"
þ
X1
n¼1

a
r

� �n
ðan cosðnhÞ þ bn sinðnhÞÞ

#
; ð4:17Þ

uð2Þz ¼ b
2p

h1 þ Kðp � h2Þ
"

þ
X1
n¼1

r
a

� �n
ðcn cosðnhÞ þ dn sinðnhÞÞ

#
; ð4:18Þ

where an, bn, cn and dn are given by Eqs. (4.8) and (4.9). T ðk; t=t0Þ takes the form of Eq. (4.10) for the Kelvin
model and Eq. (4.16) for the Maxwell model.
The interaction energy of the dislocation is

E ¼ b2G2
4p

K logð1
"

� n2Þ � 2

C þ 1
X1
n¼1

T
p

Z p

�p

nnþ1 sin h sinðnhÞ
1þ n2 � 2n cos h

dh

#
: ð4:19Þ

The force acting on the dislocation is

Fx ¼
b2G2Kn

2pað1� n2Þ
1

�
þ 1

C � 1 g2ðn; k; t=t0Þ
�
; ð4:20Þ
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where

g2ðn; k; t=t0Þ ¼
1� n2

n

X1
n¼1

nn T
p

Z p

�p

nþ 1þ ðn� 1Þn2 � 2nn cos h
ð1þ n2 � 2n cos hÞ2

sin h sinðnhÞdh: ð4:21Þ

Function g1 and g2 show weak dependence on n as shown in Fig. 6. It is also noticed that g1 and g2 depend
on k and t through the function T ðk; t=t0Þ, therefore we only present the numerical results for g1 as function
of t and k in Figs. 7 and 8 for the Kelvin model. Fig. 7 shows the variation of g1 with respect to t=t0 for
various k. When k equals zero, the interface evolves toward a free surface as time elapses. Fig. 8 shows the
variation of g1 with respect to k for various t=t0 When the dislocation is just introduced into Material 1,
there is no displacement jump across the interface. The results evolve toward that for the spring model as

time elapses. A comparison is made between the Kelvin model and the Maxwell model in Fig. 9.
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5. Concluding remarks

The analytical solutions for the interaction between a screw dislocation and an imperfect interface

modeled by viscoelastic behavior are derived. The force acting on the dislocation depends on the modulus

mismatch C, imperfection of the interface k and normalized time t=t0. The introduction of the dislocation in
Material 1 at t ¼ 0 gives the interface a so-called ‘‘creep’’ test loading. The evolution of the displacement
jump across the interface depends on the viscoelastic models.

For the Kelvin model, the interacting force on dislocation starts with the value that a perfectly bonded

interface exerts on the dislocation, then with the relaxation of the imperfect interface, and the force

eventually reduces to the value for a spring modeled interface. The mismatch of the bi-materials and the
imperfection of interface determine the initial and the final magnitude of the interacting force, while t0 sets
the process of evolution. For the Maxwell model, the interface evolves from the spring model towards a free

surface. Solutions for other viscoelastic models with more constitutive parameters can also be obtained by

using a similar derivation.

It should be pointed out that as the analytical solutions for both geometric configurations are presented

in fairly simple forms, they can be applied as fundamental solutions for other research topics, such as

dislocation pile ups, crack and composite mechanics.
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