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Abstract

The analytical solutions for the interaction between dislocations and interfaces are of great importance to materials
scientists as well as to mechanics researchers. The interfaces are treated as perfectly bonded in the most of the existing
research works, where the traction and displacement vectors are continuous across the interfaces. However, in reality,
there are discontinuities of displacements across the interfaces. In the present paper, the interaction between a screw
dislocation and an imperfect interface is considered. The imperfect interface is modeled by linear spring and dashpot,
i.e. linearly elastic and viscoelastic behaviors are introduced to model the imperfection of the interface. Particularly, we
solved the boundary value problem analytically for Kelvin and Maxwell type of interface. In terms of geometrical
configurations, we obtained the solutions for two joint half-spaces and a circular inclusion embedded in an infinite
matrix. The analytical results show that the force acting on the dislocation depends on the mismatch of materials and
the imperfection of the interface and evolves as time elapses.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The analytical research on the interaction between interfaces and dislocations started in early 1950s by
Head (1953) who analyzed the force on a screw dislocation near an interface of a bi-material. Since then,
dislocation interacting with interfaces has been an active research topic for solid mechanics researchers. The
following two review articles give us a clear picture of the evolution of the research. Dundurs (1969) did the
first detailed review, where he summarized most of the contributions up to the end of 1960s. Most recently,
Chen (2001) reviewed the progress in the dislocation/interface interaction research in the past thirty years as
part of his effort to study the dislocations interacting with wedged interfaces and inhomogeneities. Since the
single dislocation interaction with interfaces can be considered as Green’s function, there are a number of
research topics derived from the dislocation/interface interaction research. The cracks (Griffith crack and
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Fig. 1. A screw dislocation near an interface.

Zener—Stroh crack) have been formulated by using distributed dislocation concept (Weertman, 1996). The
plasticity and strengthening phenomena have also been explained and calculated by dislocation mecha-
nisms (Hirth and Lothe, 1982, and Mura, 1987).

It is noticed that in all the above mentioned research works, the interface was treated as perfectly
bonded. In mechanics terminology, it is described by, referring to the configuration of Fig. 1,

Ti(Z)(O,y, 1) = Ti(l)(O,y, t) traction continuity, and

(1.1)

ui(l)(o7 V1) = “i(2> (0,y,¢) displacement continuity.

Introducing the imperfection to the interface gives us a useful analytical tool to model the damaged
interface (Fan and Sze, 2001) and inter-phase (Hashin, 1991), to name a few. Among the various imperfect
interface models, the linear spring model has been widely used and shown good agreements with the ex-
perimental data (Margetan et al., 1988; Lavrentyev and Rokhlin, 1998). The linear spring model also
attracted attention from analytical researchers (for example, Zhong and Meguid (1997), Shilkrot and
Srolovitz (1998) and Benveniste (1999)). As another imperfect interface model, the slipping model, in which
interfaces have no resistance to the shear force, has also been adapted in many research works. Stagni and
Lizzio (1992) investigated the dislocation in a lamella inhomogeneity with slipping interfaces. Chen et al.
(1998) considered the dislocation near a sliding interface. More recently, Benveniste and Miloh (2001)
made detailed classification of the imperfect interfaces by using an asymptotic expansion.

In the following sections, the interaction of a screw dislocation with viscoelastic interfaces is considered.
The two materials adjacent to the interface are assumed to be linearly elastic, while the imperfect interface is
assumed to be viscoelastic. Solutions for the Kelvin model and Maxwell model are derived for demon-
stration purpose. Two geometrical configurations are considered in Sections 2 and 3, i.e. two-joint infinitely
extended half-spaces and a circular inhomogeneity embedded in an infinite matrix.

As a rule of thumb, the viscoelastic behavior should be considered when the working temperature of a
solid is above 1/3 to 1/2 of its melting temperature (Kelvin scale). There are plenty of cases where the
interface should be considered as viscoelastic. As an example, let us consider a case where two pieces of
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metal (e.g. aluminum) are jointed by a lower melting temperature “glue” (e.g. epoxy). The melting tem-
perature for aluminum is about 933 °K, while the melting temperature for epoxy is about 340-380 °K
(Ashby and Jones, 1980). If this joint piece is working at room temperature (300 °K), the materials are
considered as linear elastic, while the interface should be considered as viscoelastic.

2. A screw dislocation near viscoelastic interfaces

Firstly, let us consider a screw dislocation near an imperfect interface as depicted in Fig. 1. The Materials
1 and 2 adjacent to the interface are linearly elastic and their shear moduli are denoted by G, and G,
(Poisson’s ratios v;, v, are not needed for anti-plane problem). The interface, on the other hand, possesses
viscoelasticity. The coordinates are set up in such a way that the interface is along the y-axis and the screw
dislocation is located in Material 1 at point (a,0).

For the present anti-plane configuration, the only non-vanishing displacement u, is the function of co-
ordinates x and y. Since the viscoelastic response comes from the interface, the inertia force can be neglected
in Materials 1 and 2. Thus, the displacement u, satisfies the Laplace’s equation

Viu. = 0. (2.1)
For a linearly elastic solid, the non-vanishing stress components are given by Hooke’s law,

auz auz

0.=0G and ayZ:Gay.

(2.2)

When ¢ = 0, a screw dislocation is introduced into Material 1 and fixed at the position (a, 0). For the sake of
convenience, we take the plane y = 0 as the dislocation slipping plane, i.e.

ling[uz(x, —n,t) —u(x,n,t)] =b (forn>0,x>a and ¢t > 0), (2.3)
n—

where b is the magnitude of Burgers vector. At any moment, the traction across the interface is assumed to
be continuous

o2(0,y,1) = a(0,2,1), (2.4)

where the superscripts “1” and “2” denote Materials 1 and 2. For the displacement condition on the in-
terface, several models are available in the open literature, for example, the perfect interface (Head, 1953),
the linear spring model (Hashin, 1991) and the slipping model (Chen et al., 1998). In the present study, we
introduce the viscoelastic behavior to the imperfect interface.

Firstly let us consider the Kelvin model, in which a linear spring and a linear dashpot are parallel-
connected (Shames and Cozzarelli, 1997). The relationship between the jump of displacement and the
traction on the interface is given by

0
k[uil)(ov.% t) - u£2)(07ya t)} + 17& [uS)(O,y, t) - uiz)(ovya t)] - O'](;) (ana t), (25)
where £ is the “spring constant” of the interface and # is the viscosity coefficient.
At t = 0, when the dislocation is just introduced into Material 1, the displacement across the interface
has no time to have a jump due to the dashpot. Therefore the initial condition for the displacement is read
as

u(0,y,0) = u?(0,y,0). (2.6)
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The solution to this boundary/initial value problem is assumed as

b
m_ - no)
u, o (91 + K@z) + u,’, (27)
@_2b 40
u! 72_[(1 —K)0, + Kn| + 4\, (2.8)
P A At B |
where the definition of 0; and 0, are shown in Fig. 1 and
r—1
= F—H, and I = Gz/Gl. (29)

It is noticed that the underlined terms in Egs. (2.7) and (2.8) are the solutions for the perfect interface
(Dundurs, 1969), while the imperfection of the interface is included in 4" and #® which are also harmonic
functions, i.e.

Vi) =0, and VZ® =0. (2.10)

To solve this boundary/initial value problem, we apply the Laplace’s transformation to time ¢, and the
Fourier transformation to the coordinate y. Thus, the displacement can be expressed as

U.(x,s,p) = / / i.(x,y, t)e" Ve P dydt, (2.11)
0 —00

~ -1 1 P isy

i.(x,y,t) =L 7 U.(x,s,p)e™ds |, t], (2.12)

where L~! refers to the inverse formulae of Laplace’s transformation. Substitution of Eq. (2.12) into Eq.
(2.10) leads to

2
<66x2 - sz) U.(x,s,p) = 0. (2.13)

Since the displacements should be finite as x — oo, we have the integral transformations of displacements in
Materials 1 and 2 as

~

U (x,s,p) = A(s, p)e "1, (2.14)
U (x,5,p) = Cls, p)e., (2.15)
By using the conditions of Egs. (2.4), (2.5) and (2.6), A(s) and C(s) can be determined by
A(s,p) = —I'C(s,p), (2.16)
Cls,p) = Sb(K — Dysen(s) L 2" (2.17)
s,p) == — §)— —/—, .
Pr=3 g p las| + A+ pty
where sgn(s) is the sign function
1 s>0
sgn(s) =¢ 0 s=0, (2.18)
-1 s<0
and
, G+ G G+ G,
= ak d 6= . 2.19
p a(Gle ) and 1o an< GIGZ) (2.19)

A is a dimensionless parameter which measures the interface “rigidity” and ¢, is the relaxation time.
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Substituting Eqgs. (2.14)+(2.19) into (2.12), we can obtain the displacements 4" and 4 as

I'b(K —1) [ aqe™st+@ t ] .

(D - _ —as— — A—

! (x,p,1) o /0 P 1 —exp| —as . Alo sin(sy) ds, (2.20)
_ 00 s(x—a)

a9 (x, y, ) = _b(Kzn 1)/0 ‘ZJJ {1 —exp(—as;—ﬂv;)} sin(sy) ds. (2.21)

Furthermore, substituting Egs. (2.20) and (2.21) into Egs. (2.7) and (2.8), and then using Hooke’s law
Eq. (2.2), we obtain the total stresses in the bi-materials as

Gyb(K — 1) [ e+ t .t ) Gb(y 'y
(1) - ) as—— = _ w2
o) (x,,1) " /0 A+ saexp| — as A sin(sy) ds 7 5 ]

as + A to 0 }”12 ry
(2.22)
Gyb(K —1) [ e™stta) [ t ot Gib(x—a x+a
Giy(x,y,[):* 27‘5 /0 as—i—/l A+S(leXp *CISE*/LE COS(Sy)dS+g r% *7 y
(2.23)
G:b(K —1) [ e t t .
Gg) (x,p,1) = 2 (27.[ ) [) Zs 7 {,{ + sa exp< — as% - th)} sin(sy) ds, (2.24)
Gyb(K —1) [™ e t t
) 2 —as—— = 2.2
o, (x, 1) > /0 oo /. +saexp| — as . A . cos(sy) ds. (2.25)
The elastic interaction energy for the configuration can be calculated by
1 o]
E=3b / i} (x,0,7)dx, (2.26)
a+ry

where 7y is the radius of dislocation core, used to cancel the impropriety of elastic theory in the core. Using
Eq. (2.23), we can obtain

2 2 or ) 0o 2w
g0 () ¥Ei( 21+ 71 +/ |, (2.27)
4n 7o r+1 ty 0 wWH+Aiw
where
oo e~
Ei(x) = / " dg, and w = as. (2.28)

The force acting on the dislocation is given by the negative gradient of the interaction energy with respect to
the position of dislocation, a,

)2 e 2r \
where
—1
Je(A t/ty) = 27 {Ei(%) - Ei<22 + /lt>] + <1 + t) exp( — it>. (2.30)
tO 2t0 t()

The subscript “K” refers to the Kelvin Model.
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Fig. 2 shows the variation of fx (4,/t)) with respect to ¢/¢y for various .. When A tends to be infinity,
Jfx =1, the force given by Eq. (2.29) tends to that for the perfect interface. When A4 equals to zero, the
interface is described by the dashpot only and evolves toward a free surface as time elapses. Fig. 3 shows the
variation of fx(4,¢/ty) with respect to A for various #/f. It is seen that I' and A determine the initial and
the final magnitude of the interacting force, while ¢, sets the process of the evolution.

Secondly, we apply Maxwell model to the interface. The constitutive Eq. (2.5) for the interface is re-

placed by

Rle

170, . 1) = ul(0,y,1)] =

0 1
—[6(0,9,0)] +-61(0,y,1).
at [ze( 7y’ )]+no-xz( 7y? )

| =

1.2

1.0+

0.84

fre s to,t)

044  ___j=10

0.2

0.0

0.6

—-—-= A->infinity

--A=0.1
—A=0

12

tity

Fig. 2. The variation of fx (1,¢/t) vs. t/t.
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Fig. 3. The variation of fx(4,¢/ty) vs. A.
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Fig. 4. Comparison between the Kelvin model and the Maxwell model.

At the moment of 7 = 0, the dashpot does not deform immediately, while the spring responds to the loading
without time delay. Thus, the displacement across the interface exhibits an immediate jump as the response
of the spring,

G,b(K — 1 < )esi—a)
Kl (0,7,0) — u® (0, y,0)] = Z2E =1 / S sin(sy)ds. (2.32)
0

2n as+ A

Through a similar formulation, it is found that the interacting force on the screw dislocation takes the same
form as Eq. (2.29), but fx is replaced by

futafn) = [ el ~ 2 Law, (233)

—e _
0o W+ w+ 4t

where 4 and f, are defined in Eq. (2.19) and the subscript “M” refers to the Maxwell model. It is noticed in
Eq. (2.31) that the displacement jump increases till the traction on the interface reaches zero. In other
words, the interface evolves toward a free surface when time elapses. The evolutions for Kelvin model and
Maxwell model are compared in Fig. 4.

3. Discussion on special cases

In the above derivation, there are two interfacial parameters, namely, A and #j, defined in Eq. (2.19). The
special cases, when these two parameters take limit values (zero and infinity), call for a detailed discus-
sion.

Firstly, let us consider the Kelvin model governed by Eq. (2.5),

0
k[ugl)(ov.% t) - u§2)(07ya t)} + ’7&[“21)(0,% t) - uiz)(ovyv t)] = O-)(;)(an7 t)' (25)

(K)y = 0.
The vanishing coefficient of viscosity leads to a zero relaxation time, #, = 0. Eq. (2.5) becomes

kD0, p,8) —u®(0,y,1)] = alV(0,y,1). (3.1)
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The constitutive relation for the interface given by Eq. (3.1) is commonly called ““linear spring model”. It is
realized that there is no time effect in the solution since the visco-effect vanishes. The force acting on the
dislocation due to the imperfection of the interface is reflected by the curve of ¢/fy — oo in Fig. 3.

(K2)np — oo.
For this condition, (relaxation time #, — co) and Eq. (2.5) becomes
(0, ,1) = u?(0,3,0)] = F(y). (3.2)

It refers to the prescribed displacement jump along the interface. One of the plausible physical models can
be found in the dislocation theory of grain boundaries. The grain boundary was modeled as a pile up of
dislocations or distributed dislocations along the grain boundary between two grains (Hirth and Lothe,
1982, Chapter 19). It should be pointed out that we need to relax the initial condition Eq. (2.6)
|{1(0,y,0) — ul?(0,y,0)| = 0 by Eq. (3.2) for the above physical phenomenon.

Nevertheless, our numerical result shown in Fig. 3 (¢/t, = 0) for this limit converges to a perfect interface
solution due to the initial condition Eq. (2.6).

(K3)k =0.
Eq. (2.5) is simplified as

that means the imperfect interface will deform like viscous fluid, which cannot resist the shear stress.
Therefore, the jump of displacement does not stop increasing until the traction on the interface reaches
zero, which means a free surface. The graphical result is shown in Fig. 2 by the curve A = 0.

(K4)k — oo.
This condition leads to
V(0 y,1) —u?(0,y,0)] = 0. (3.4)

This is the condition for a perfect interface.
For the second viscoelastic model, Maxwell model, there are also four limit cases for our attention. The
original constitutive equation for the interface is given by

S 0.3, = u20.3,0)] = £ 10 0.3,0)] 4 A 0,1.0). @31)
(M1)y = 0.
This condition corresponds to a zero relaxation time, o = 0. Eq. (2.31) becomes
a(0,y,¢) = 0. (3.5)
This is the free surface condition. fy; = 0 for this case.
(M2)y — oo.
Under this condition, the interface is described by
k1M (0,y,0) = u?(0,y,0)] = ol (0,9,1). (3.6)
It is the so-called linear spring model for the interface.
(M3)k = 0.

Eq. (2.31) becomes
o0(0,7,6) = H(y). (3.7)
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Table 1

Summary of the special cases
Interface model n=20 n— 0o k=0 k — oo
Kelvin Spring model Prescribed jump of displacement nul =0 Perfect interface
Maxwell Free surface Spring model Free surface nu =0

Our numerical solution converges to the free surface solution due to the constraint of the initial condition
Eq. (2.32).

(M4)k — 0.

1 S U0,3,) ~ (0,3, 0] = 2(0,1.0). 63

The interface is described by the dashpot only.
For the sake of quick reference, all the discussion in the present section is summarized in Table 1.
4. Screw dislocation interacting with circular inclusion

Let us consider a screw dislocation in the matrix as shown in Fig. 5, where & > 1. The Laplace’s equation
in the polar coordinate takes the form of

G ?
2, —
Vou, = <6r2+ e + 2620) =0. (4.1
Its general solution is assumed to be
b o]
M —
) =5 {01 +K(6, - ; ( ) a, cos(nd) + b, sm(n@)]} (4.2)
b
(GO
=5 {( K)0, + nK + ; (a> ¢, cos(nb) +d, s1n(n0)]} (4.3)
A,
9 w 92 91 X
‘alé

Fig. 5. A screw dislocation near a circular inclusion.
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where 0 < 6, 6,, 6 <2n and K is defined by Eq. (2.9). Again, the underlined terms in Egs. (4.2) and (4.3) are
the solutions for the perfect interface (Dundurs, 1969). The effect of the imperfection of the interface is
taken into account by the series solution.

The traction on the interface, r = a, is continuous

c?(a,0) = ¢V (a,0), (4.4)
where
0, = 0,;8in0 + 0. cos 0. (4.5)

The displacement condition on the imperfect interface is described by the Kelvin model. At the time ¢ = 0,

ulM (a,0,0) — u®(a,0,0) = (4.6)
When ¢ > 0,
0
k) (a,0,0) — ul?(a,0,1)] + s, W) (a,0,1) — ul(a,0,1)] = 0\ (a,0,1). (4.7)

Substituting Egs. (4.2) and (4.3) into Egs. (4.4) and (4.7) leads to

a, =c, =0,b, = —Id,, (4.8)
d, = (1 —K)Te [ _csinbsin(n0) 4, (4.9)
14+ & —2E&cosh
1 A+n
TK_;H—A[I_eXp(_ o t)}, (4.10)

where 1 and ¢, are defined by Eq. (2.19). It should be pointed out that the parameter “a” in the present
section is the radius of the circular inclusion, which is different from the “a” in Section 2
The interaction energy of dislocation is given by

™ 7" sin 0 sin(n0)
Kl + r'K / ——d0|. 4.11
Ko < ) Z 21+ & —2&cosh ( )

The force acting on the dislocation is calculated by taking the derivative of E with respect to & (while a is a
constant).

e
4r

E =

b*G\K [ r ]
= 1+ s t]t) |, 4.12
S || oo A ) (@.12)
where
> "1—n—(1+n)& +2nécosl . .
=& & -1 / sin 0sin(n0)do|. 4.13
fiK ; l - (14 & —2&cos )’ (0) (413)
If the Maxwell model is adopted on the interface,
0 106V (a,0,1) 1
—[y(D _ @ — e\ )~ ()
3 1 (a,0,t) —u(a,o,1) k o +-0(a,0,1). (4.14)
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The initial condition is

(4.15)

K (a,0,0) — u® (a,0,0) = 22K =1 =

" 2na

J.sin(n0) /“ Esin 0 sin(nl') 40
n+i 7w ) 148 —2cost

n=I

The corresponding results can be obtained by replacing Eq. (4.10) with

1 i1 ni t
Ty=——r 1 —exp| — =) 4.16
M i [ p< n+ito>} (4.16)

As a counterpart problem of the above configuration, in the rest of this section, we will consider the case
when the dislocation is inside the inclusion, ¢ < 1. The displacement field is structured as

U =

z

— |(1+K)8, — KO+ Z ( ) (a, cos(nf) + b, sm(n(?))] (4.17)

z

b
o_b
Y T

0, +K(n—0)+ Z ( ) ¢, cos(nb) +d, sm(n(?))] (4.18)

where a,, b,, ¢, and d, are given by Egs. (4.8) and (4.9). T(4,¢/ty) takes the form of Eq. (4.10) for the Kelvin
model and Eq. (4.16) for the Maxwell model.
The interaction energy of the dislocation is

b2G2 / é"“ sin 0 sin(n0)
E= Klog(l — &) — - df|. 4.19
el I'+1 Z —2&cos 0 ( )

The force acting on the dislocation is
b*G,K¢ { 1 }
= 1+ At/ ], 4.20
2ra(l — 52) I — 1g2(f /o) ( )
2.0

Sk 8k

-2.0 . . .
0 10 20 30 40
A

Fig. 6. The variation of gk, gx Vs. 4.
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where

g2(67 )"7 t/to) =

2 oo n — 2 _
1-¢ nT/ nt1+n-1)¢ 2nécosesin95in(n0)d9. (4.21)

¢ - " (14 & —2&cosh)’

Function g, and g, show weak dependence on ¢ as shown in Fig. 6. It is also noticed that g, and g, depend
on A and ¢ through the function T'(4,¢/t), therefore we only present the numerical results for g, as function
of ¢ and 1 in Figs. 7 and 8 for the Kelvin model. Fig. 7 shows the variation of g; with respect to ¢/#, for
various 4. When A equals zero, the interface evolves toward a free surface as time elapses. Fig. 8 shows the
variation of g; with respect to / for various #/f, When the dislocation is just introduced into Material 1,
there is no displacement jump across the interface. The results evolve toward that for the spring model as
time elapses. A comparison is made between the Kelvin model and the Maxwell model in Fig. 9.

n=1 &

2.0
1.5 ol
/-
4
4
1.0 U
=1 ¢=10.0
o) / N

054 / ----=01

L e 2=10

————— A->infinity
0.0
-0.5 T T T T
0 1 2 3 4 5
t/t0

Fig. 7. Variation of gk vs. /.

2.0

1.84 0
0

1.6 ----t/t =10

144 0

124«

1.0 ~

RS
/
’
/

0.8
06
0.4
02
1

-0.2 : : : :

Fig. 8. The variation of gk vs. A.
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200
AS0L st e
A=01
154 .,
= .
- 1.0-" r=1
X
o
£=10
0.5 —— Kelvin Model
- Maxwell Model
0.0 '
’ 2 4 6 8 10
tlt,

Fig. 9. Comparison of g; between the Kelvin model and the Maxwell model.

5. Concluding remarks

The analytical solutions for the interaction between a screw dislocation and an imperfect interface
modeled by viscoelastic behavior are derived. The force acting on the dislocation depends on the modulus
mismatch I', imperfection of the interface / and normalized time ¢/#. The introduction of the dislocation in
Material 1 at = 0 gives the interface a so-called “creep” test loading. The evolution of the displacement
jump across the interface depends on the viscoelastic models.

For the Kelvin model, the interacting force on dislocation starts with the value that a perfectly bonded
interface exerts on the dislocation, then with the relaxation of the imperfect interface, and the force
eventually reduces to the value for a spring modeled interface. The mismatch of the bi-materials and the
imperfection of interface determine the initial and the final magnitude of the interacting force, while #, sets
the process of evolution. For the Maxwell model, the interface evolves from the spring model towards a free
surface. Solutions for other viscoelastic models with more constitutive parameters can also be obtained by
using a similar derivation.

It should be pointed out that as the analytical solutions for both geometric configurations are presented
in fairly simple forms, they can be applied as fundamental solutions for other research topics, such as
dislocation pile ups, crack and composite mechanics.
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